 Programming Languages CS 181

 Winter of 2003

 Programming Assignment #2

 Simple Class Records Database in Prolog

 Due: Friday, March 14, 2003, 11:59 pm

PROGRAM OUTLINE:

class_records :- retrieve(Command) ,

 process(Command),

class_records.

class_records :- write_ln(“End of processing”).

Description:

 * Definition of the dynamic predicate retrieve/1 will be provided by me. DO NOT include it in your programs, except

 for testing.

 * You can use up to four dynamic predicates to store information about student, exam and grade records.

 * Initially there are no students, exams or grades in the database.

 * You will need to define the process (Command) predicate to handle all the possible commands listed below and handle any errors. In particular, you will need to provide a clear, complete and informative message to the screen Informing about the actual execution of any command.

Allowed Commands:

I will provide a specific list of commands during grading. Do not include any commands in your file, except when testing.

In the following commands ID is an integer key, First, Middle, Last, Name and Major are atoms, Active is either yes or no, Grade is 0-100

The meaning of most of the following maintenance commands is self-explanatory. Unless stated otherwise, all arguments are required.

Additions:

a) add_student(id(ID), name(last(Last), first(First), middle(Middle)), major(Major), active(Active)).

(First and Middle are optional).

b) add_exam(id(ID), name(Name), weight(Weight), max(Max)).

(max means that scores are between 0 and Max)

c) add_grade(student_id(SID), exam_id(EID), grade(Grade)).

Deletions:

d) delete_student(id(ID), name(last(Last), first(First), middle(Middle)),major(Major), active(Active)).

(deletes all matching students; all args are optional)

e) delete_exam(id(ID), name(Name), weight(Weight), max(Max)).

(deletes all matching exams; all args are optional)

f) delete_grade(student_id(SID), exam_id(EID), grade(Grade)).

(deletes all matching grades; all args are optional)

Updates: If an argument is instantiated then it replaces the previous value. Otherwise it is unchanged.

g) update_student(id(ID), name(last(Last), first(First), middle(Middle)),major(Major), active(Active)).

(updates all matching students; all args except ID are optional)

h) update_exam(id(ID), name(Name), weight(Weight), max(Max)).

(updates all matching exams; all args except ID are optional)

i) update_grade(student_id(SID), exam_id(EID), grade(Grade)).

(updates all matching grades; all args except ID are optional)

Queries: Their meaning is explained below:

j) student_grades(student_id(ID), Grade_List).

Returns a list of all grades of a given student with id(ID) in the form of a list:

 [(Exam_Name, Grade), (Exam_Name, Grade), ^Å].

k) exam_grades(exam_id(ID), Grade_List).

Returns a list of all grades for the given exam with id(ID) in the form of a list: [(Student_Name, Grade),

(Student_Name, Grade), ^Å].

l) final_grade(student_id(ID), Final_Grade).

Returns the weighted average (in percents) of all student^Òs grades. Final_Grade is an integer. Remember that e.g. a

score of 30 on an exam with Max=40 is equivalent to a score of 75/100. Include only active students and active exams!!!

m) mean_grade(exam_id(ID), Mean_Grade).

Returns the average of all exam grades (in percents). Mean_Grade is an integer 0-100. For example, a score of 30 on an

exam with Max=40 is equivalent to 75/100. Include only active students!!!

n) find_student (id(ID), name(last(Last), first(First), middle(Middle)),major(Major), active(Active)).

(finds one matching student; all args are optional)

o) find_all_students (id(ID),name(last(Last),first(First),middle(Middle)),major(Major), active(Active),

Student_List).

(all args are optional; finds all matching students and lists their last and first names in the Student_List [

(Last, First), (Last, First), ^Å])

END

